The Future Made Clear OHARA

Properties of GD-FHT ${ }^{\text {TM }}$

	Properties	GD-FHT ${ }^{\text {m }}$	Conventional Materials	
			S-BSL7(BK7)	Synthetic Fused Silica
Electrical Properties	Volume Resistivity* ($\Omega \cdot \mathrm{cm}$)	1.1×10^{11}	1.0×1015	1.0×1019
	Surface Resistivity*** (Ω-口)	4.4×10^{12}	1.0×1015	8.6×1014
	Charging Voltage*** kV	0.05	2.6	3.1
	Half Decay Period*** (s)	8.9	>30min	>30min
Mechanical Properties	Knoop Hardness** Hk	590 (6)	570 (6)	640 (6)
	Abrasion**	53	94	59
	Young's Modulus (GPa)	82	80	71
	Rigidity Modulus (GPa)	33	33	31
	Bending Strength (MPa)	107	64	69
	Poisson's Ratio	0.22	0.21	0.17
Thermal Properties	CTE 10-7/K	33	72	5.5

*Measured at $20^{\circ} \mathrm{C}$ and Humidity of 60% according to JIS K 6911.
**Measured according to JOGIS (Japan Optical Glass Industry Association standard)
${ }^{* * *}$ Measured referring to JIS L 1094 (OHARA's original method). Half decay period is
the time required for the charging voltage of the surface to half of its initial value.

Please contact us to discuss your specific requirements.

